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We investigate the interaction of concentration fields of passive tracer with velocity 
fields characterizing geostrophic turbulence. We develop and compare results from 
equilibrium statistical mechanics, from turbulence-closure theory and from numerical 
simulation. A consistent account emerges. Among the results we show (1) that 
velocity fields efficiently scatter tracer variance to all scales, (2) that tracer variance 
evolves toward an equilibrium spectrum which is different from the equilibrium 
spectrum for vorticity variance, and (3) that intermittency of the tracer field is 
characteristic of a cascade of tracer variance across wavenumber space. The greater 
efficiency of the cascade of tracer variance relative to a vorticity cascade is due to 
wavenumber-local advective terms which affect tracer but not vorticity. We suggest 
that the more efficient tracer cascade results in shorter Lagrangian autocorrelation 
times for tracer than for vorticity. 

We investigate the spatial flux of tracer when a uniform gradient of average tracer 
concentration is imposed. We show ( 1 )  that the spatial flux has dominant contributions 
from fluctuations on scales slightly larger than the dominant energetic scales, (2) that 
an effective eddy-diffusivity formulation is valid and that the diffusivity agrees 
with simple mixing-length estimates, and (3) that eddy diffusivity is significantly 
anisotropic if Rossby-wave propagation occurs. Meridional diffusivity is suppressed 
relative to zonal diffusivity. 

We complement the study of stirring down from a uniform gradient with a 
numerical investigation of the stirring out of an initially concentrated spot. We see 
that eddy diffusivity can be a dangerous concept for such problems. 

1. Introduction 
Large-scale distributions of water properties result from some combination of mean 

advection plus vertical and horizontal stirring. However, none of these fields are 
known in the ocean. Deep circulation is uncertain even as to the sense of the mean 
motion, while processes of vertical and horizontal stirring are poorly understood. 
Finite numbers of observations serve as constraints on possible circulation and mixing 
fields. I n  part, the vigorous eddy field, which is presumed to support horizontal 
stirring, frustrates efforts to observe the mean circulation either by direct observation 
or by inverse calculation. On the other hand, one may assume some theoretical model 
for circulation and then adjust coefficients of ‘eddy diffusivity’ to attempt to 
reproduce the broad features of various property distributions. Yet, even with such 
strong and implausible constraints as constant diffusivities, results are not unique. 
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Although much interest focuses on the maintenance of mean distributions, i t  is 
important to understand the statistics of fluctuations about the means. This is both 
a practical concern in relation to fisheries or pollution management or in relation to 
geochemical mapping programs and a theoretical concern in itself and in relation to 
the maintenance of mean distributions. 

We seek more than a consistent account of observed distributions. We seek 
predictive capability in order to anticipate, for example, the effectiveness of uptake 
of excess CO, by stirring down along isopycnal surfaces or the consequences of 
deliberate or inadvertent release of radioactive or toxic waste substance. This means 
that we require a statistical-dynamical understanding of the stirring processes which 
result in a field of geostrophic turbulence. 

There may be a further point of interest insofar as the dynamics of geostrophic 
turbulence are sometimes compared with models of turbulence in strongly magnetized 
plasmas (Hasegawa, Maclennan & Kodama 1979; Waltz 1983). The present study 
may bear upon problems of anomalous transport of heat (hot electrons) or doped 
impurity ions. In  particular, as we will show how Rossby-wave propagation 
suppresses meridional fluxes, likewise we expect drift-wave propagation to suppress 
radial fluxes in a magnetically confined plasma. 

2. Model equations 
The variety of possible stirring environments in the ocean is diverse. In this paper 

we consider an idealization which may capture some of the features of large-scale 
oceanic stirring and transport. Suppose a vorticity field C(x, t )  = 2 . V  x u coevolving 
with a passive tracer field $(x, t )  according to 

a,{+pv+u.vg =f+u,c, ( l a )  

atq5+u.G+u-v$ = D$$. ( 1 b )  

Here u = (u, v )  is the quasi-non-divergent horizontal velocity field, is the gradient 
of Coriolis parameter, f ( x ,  t )  is any field of external torques (Ekman pumping) and 
D, is a linear operator on 5 which acts to dissipate fluctuation variance a t  small scales. 
The vorticity equation (1  a )  can be said to describe barotropic /3-plane turbulence. 
There exists a reasonably well developed statistical-dynamical understanding for this 
problem (Rhines 1975, 1977; Holloway & Hendershott 1977; Basdevant et al. 1981). 
With /3 = 0, ( l a )  describes two-dimensional turbulence, a problem that has been 
widely investigated. Thus we posit ( la )  in order to deal with a reasonably well 
understood vorticity or velocity field. 

Equation (1 b)  gives the evolution offluctuations $ about a mean tracer concentration 
field 3 = 3, + G.x. Dq is a linear operator on q5 which acts to dissipate fluctuation 
variance a t  small scales. Except for effects of D$, the total tracer 3 + q5 is a conserved 
passive scalar field. Only u s  G acts as a source for $. 

Model equations ( 1  a ,  b) may seem more geophysically relevant if we suppose that 
they represent a vertical integration between two nearby isopycnal surfaces, so that 
u is a parapycnal (‘ along-isopycnal ’) transport and q5 is the vertically integrated tracer 
substance per unit isopycnal area. For the present level of idealization, such 
differences of viewpoint are only matters of taste. 

We next suppose that two-point correlations of the fluctuation field vanish for large 
spatial separation. We then impose a constraint that  fluctuations satisfy periodic 
boundary conditions over some large x- and y-periodicity length. This computational 
artifice assures that we can make an exact Fourier representation of { and q5. 
Physically we have in mind a large area of ‘open ocean’, away from lateral 
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boundaries. We examine a statistically homogeneous environment, hoping that our 
results may yet be of some value under circumstances which are not too strongly 
inhomogeneous. Given the present boundary conditions, we define spatial Fourier 
transforms of 6 and $ : 

<(x, t )  = ck(t)eikx, $(x, t )  = x $k(t) eik'x. (2) 
k k 

Equations of motion for the Fourier coefficients <k and $k then form an infinite set 
of coupled ordinary differential equations. From ( 1 )  

where wk = -pkz.k2, A,, = e*(k xp) /p2  and Gk = $ * ( G x  k ) / k 2 .  
Fourier transforms of the operators D, and D6 are given by vk and K ~ .  We assume 

that uk and K~ are algebraic functions of k = lkl which we are free to assign. A 
familiar choice, for example, is to assign uk and K k  after molecular viscosity and 
diffusion, i.e. uk = uo k2, K~ = K~ k2,  with vo and K~ constants. We emphasize, 
however, that such a choice is unfounded for the present problem. Lastly, fk(t) is the 
transform of the external torques field f ( x ,  t). 

Formally, (3a ,  b)  are written for a countably infinite set of k .  We truncate that 
set to a large number (say lo3 to lo5 or so) of wavevectors by imposing a constraint 
that there be no interaction with any k such that k > k,, where k ,  is some assigned 
truncation wavenumber. High-wavenumber truncation is justifiable if vk and K$ 

would be such as to  cause only negligible fluctuation variance to  occur over k > k,. 

3. Statistical-equilibrium tendencies 
Application of methods of equilibrium statistical mechanics to large-scale geo- 

physical flows has been developed in Salmon, Holloway & Hendershott (1976) and 
Frederiksen & Sawford (1980). We focus attention on the role of nonlinear terms, viz 
66 and &5 in (3) .  Such terms are often poorly understood, usually requiring 
perturbation treatments of dubious validity. Here we adopt quite a different 
approach, omitting all forcing and dissipation terms, i.e. taking uk = K~ = fk  = Gk = 0 
in (3) .  Then the conjecture is that, after some unspecified time, solutions of ( 3 )  from 
almost any initial condition will tend toward a state of 'maximal randomness' or 
maximum entropy (to be defined below). The only constraints on the maximum 
entropy solution are that quantities which are conserved globally under nonlinear 
interactions will retain their initial values (on average) in the maximum entropy 
solution. 

For the truncated, unforced (both f and Gvanish), nondissipative set of equations 
(3), there are four conserved quantities : 

energy B = +C 16k12/k2, 
k 

vorticity variance Z = x lCk;k1', 
k 

tracer variance 

<-$ correlation 

Q = C I#,J~, 

C = X Re (Ck 4;). 
k 
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A general specification of entropy which is consistent both with classical statistical 
mechanics and with information theory (Shannon 1948) is given in terms of 
probability distributions of solutions. Imagine a phase space in which coordinates yi 
consist of the real and imaginary parts of the various ck and $k. Let P((y}, t )  be a 
probability distribution determined from some initial distribution and evolving 
following solutions to (3). Entropy is 

s(t) = -jP({Y), t )  lnp({y>, t )  dy,. ( 5 )  

For a wide range of problems, including the present problem, conserved quantities 
can be cast in quadratic forms, hence written as constraints on the second-order 
correlation matrix 

(6) 

where ( ) indicates an average over P. Carnevale, Frisch & Salmon (1981) show that 
the extremal S for given yij is 

(7)  

plus a constant which depends on the dimension of phase space. We seek yij that 
maximizes S subject to (4). In  terms of mode variances z k  = (IckI') and Qk = <l$,J2), 
the results are simple equipartition forms 

yij = <Yi Y J  > 

#( t )  = i l n  det q j ( t )  

k2 
a, + a2 k2 ' 

z, = 

&k = (86) 

(cf. Kraichnan 1967), and we suppose 6 = 0 for the present discussion. Constants ai 
are evaluated from the condition that (8) satisfy (4). Note that these results are 
independent of the value of /3. Numerical simulations showing vorticity evolution 
toward ( 8 a )  have been described by Deem & Zabusky (1971), Fox & Orszag (1973) 
and Bennett & Haidvogel (1983). Below we will describe a simulation showing 
simultaneous vorticity and tracer evolution toward (8a ,  b ) .  

It is important to emphasize - strongly - that (8a ,  b )  are not themselves physically 
plausible results. The neglect of dissipation together with finite truncation of (3) is 
not physically admissible. Nonetheless, arguments leading to (8) are quite useful for 
the three following reasons. 

( a )  Although the role of dissipation will prevent physical solutions of (3) from 
approaching (8), still the statistical tendencies due to nonlinear terms are to drive 
solutions toward (8). More precisely, nonlinear terms will cause positive growth, on 
average, of entropy (7) ,  even though dissipation may result in net loss of entropy from 
the macroscopic fluctuation fields. This tendency toward increasing entropy can be 
demonstrated explicitly for turbulence-closure theories of the type described in § 4 
(cf. Carnevale et al. 1981). 

( b )  We will be able to identify terms arising in turbulence-closure theory which 
explicitly drive solutions toward (8). This will aid us in organizing the formidable 
algebra that is generated from closure theory. 

( c )  Intermittency, which we here quantify by the occurrence of non-Gaussian 
moments of P({y}), vanishes a t  the maximum-entropy solution (8). Thus we associate 
intermittency with processes that drive solutions toward (8), i.e. with the transfer of 
variances across k-space. 

The point of this section is to note the relatively simple solutions, viz (8), a t  one 
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k 

FIGURE 1. Spectra of tracer variance and of vorticity variance illustrate the evolution of unforced, 
non-dissipative flow. One-dimensional spectra shown in the figure are the sums of modal variances 
&k and in circular wavebands of radius k = lkl. Initial spectra of tracer (Qk) and of vorticity 
(2,) are identical, shown shaded. At  later time &k and z k ,  shown as solid curves, have approached 
their separate equipartition or maximum entropy solutions, shown as dashed curves. Truncation 
is a t  k, = 30. 

limit of the parameter space of (3).  We may also observe some subtle character of 
the statistical dynamics. Consider the following apparent paradox. 

Let an initial field consist of a random phase assignment of a vorticity field 
according to a prescribed variance spectrum 2,. Independently (i.e. 6 = 0) initialize 
a random-phase tracer field with spectrum Qk identical with 2,. Let the fields evolve 
according to (3) in the case of vk = K~ = fk = Gk = p = 0. On one hand we might 
suppose that, since the initial fields are statistically identical, and since each field 
evolves only owing to advection by the same velocity field, the subsequent evolution 
of 2, and Qk will be identical. On the other hand, depending upon the initial (and 
conserved) values of E ,  z and @, equipartition results (8) show that zk and &k may 
evolve quite differently. Which occurs ? In  figure 1 a direct numerical simulation 
(64 x 64 resolution, pseudospectral, dealiased) clearly shows the dissimilar evolution 
of 2, and Qk toward their respective forms (8a ,  b) .  The two initial conditions are not 
statistically identical insofar as vorticity is directly related to the velocity field. 

_ _  
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4. Turbulence-closure theory 
Methods of equilibrium statistical mechanics, as seen in $3, are relatively easy 

to apply and may be insightful from the view of certain mathematical limits of (3). 
However, actual fluid systems do not approach absolute equilibrium (8) closely on 
account of the essential role of dissipation. Actual fluids must be viewed as ‘open’ 
systems in thermodynamic contact with the field of molecular agitation (including 
in the present cases the field of unresolved smaller-scale motions). Flows may 
approach a condition of statistical stationarity, but such a condition will be the result 
of competing disequilibrium processes including forcing, dissipation and variance 
transfer. 

Quantitative theoretical treatment for disequilibrium statistical fluid mechanics is 
not well developed. We borrow upon turbulence theory, in particular the class of 
‘eddy-damped quasi-normal Markovian ’ (EDQNM) closures. Discussions of EDQNM 
may be found in Leslie (1973), Orszag (1977) and Rose & Sulem (1978). The purpose 
is to obtain a closed set of equations describing the wavenumber distribution of 
single-time variances in a state close to statistical stationarity. Our approach is given 
altogether in terms of Eulerian field statistics. This approach is an alternative to a 
more classical line of development in which concentration-fluctuation statistics and 
transport rates are inferred from stochastic models of Lagrangian particle trajectories 
(Taylor 1921; Thiebaux 1975; Chatwin & Sullivan 1980; Durbin 1980; Davis 1983). 

Application of EDQNM is relatively straightforward but algebraically tedious. 
Closure for P-plane turbulence (3a) has been developed and discussed in Holloway 
& Hendershott (1977). Closure for (3b) with G;, = 0 has been given in Holloway (1976) 
and discussed by Lesieur, Sommeria & Holloway (1981). With Gk + 0, the problem 
becomes more complicated, but very much more interesting. 

We begin by writing ensemble-averaged second-moment equations. Multiplying 
(3a, b )  each by cz and #;, where * denoted complex conjugate, and then adding 
conjugate equations, we have 

+Akq(Ck c: +,*>+ (Akp+Akq) <#;k* cp [ q ) )  - iGk zk+ (fk #:), (9c) 

where z k  = ([kc:), Qk = (#k#z)),  r k  = (&$;)) and Fk collects the effective forcing 
of zk due to any external torques. 

It will be useful to note some relations. Because c(x, t )  and #(x, t )  are real fields, 

5-k = <;k*> #-k = 4;. (10) 

2 - k  = z k ,  &-k = &k, r - k  = r;. ( 1 1 )  

zk and Qk are real, while rk is complex. From (10) 

The various triple-moment terms in (9) will produce variance transfer. We will 
address these terms below. The Gkrk  terms in (9b) is a source of tracer variance due 
to a spatial flux of tracer down t,he mean gradient G .  That spatial flux is given by 
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G k z k  in ( g c )  acts a8 a source for hr’, which, through ( g b ) ,  provides a source for 
Qk. A term ( fk  q5;) arises from the forcing of vorticity. For present purposes we will 

Carrying onward from (9), we would construct evolution equations for the various 
triple-moment terms. The number of equations and the number of terms in each 
equation proliferate rapidly. Yet the problem remains unclosed since each set of 
equations for Nth moments will involve terms in ( N + l ) t h  moments as well as all 
lower-order moments. 

Closure is effected by a ‘cumulant hypothesis’. For the present case, all fourth 
moments are reduced to a part due to products of variance and a residual part or 
‘fourth cumulant’. A possible hypothesis is to  discard (set to zero) all fourth 
cumulants. Indeed most theory of weak wave-wave interaction corresponds to zero 
fourth cumulant. However, for stronger interactions such as in turbulence, fourth- 
cumulant discard is known to  fail. 

EDQNM makes two hypotheses: ( 1 )  that  fourth curnulants act to relax triple 
moments, and ( 2 )  that second moments evolve on timescales longer than triple-moment 
relaxation times. The second hypothesis is just the condition for quasi-stationarity, 
and we assume that it holds. Differences among EDQNM treatments focus on 
different means for specifying triple-moment relaxation times. For the present we 
may proceed simply by assuming a single, unspecified time constant 7 (cf. Frisch, 
Lesieur & Brissand 1974). Later we may select a more suitable relaxation time 
dependent upon the (k ,p ,  q)-triad of interest. 

Despite these simplifying assumptions, EDQNM treatment of (9) remains tedious 
and not very insightful. We invoke a further simplification. Either by considering 
flows only long after initiation or by considering only flows initiated with zero tracer 
fluctuations, we may retain only terms which cause r k  to be proportional to (GI. 
This condition is required from dimensional consistency. It means that we have 
discarded a number of terms that serve to describe the decay of initial transients. 

Omit ( f k  $;>. 

Proceeding from (9a) after Holloway & Hendershott (1977),  we have 

where 

and 

where 

and 
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Finally, from (9c)  

(a, + iwk + v, + q k  + Y k )  r k  = -i@k Zk, (15) 

where qk and yk are given in (13 6) and (146). A large number of terms involving sums 
over products GZZ, f Z ,  f Q  or IT have been discarded in (14) and (15) either 
because they fail to yield r proportional to JGI or correspondingly Q proportional 
to IGI2. Other terms arising in the f-equation due to non-stationarity of Z have been 
discarded. An exception to these rules occurs in (14a). We do not discard @ k ,  because 
we cannot argue that initial tracer variance will decay except through explicit dissi- 
pation K,. We retain terms that are sufficient to account for known or plausible 
physics, rejecting terms that play incidental roles related to non-stationary problems. 
Expressions similar to (14) and (15) are discussed also in Hill (1981). 

As a last note in this section, we recall the unforced non-dissipative case 
v, = Kk = f k  = Gk = 0. It may be verified by substitution that, (8) together with 
rk = 0 are stationary solutions to (13)-(15). By the H-theorem (Carnevale et al. 1981) 
these are the only stable solutions. 

5. Timescales for variance transfers 
When comparing vorticity and passive-tracer evolution, one of the important 

features is that a passive tracer (uncorrelated with vorticity) exhibits more rapid 
spectral evolution than vorticity. This feature is easily identified in the closure 
equations (13) and (14). Supposing negligible v, and K, over most k ,  the timescale 
for vorticity variance is given by qk while the timescale for tracer variance is given 
by yk. We compare the two rates: 

The first term in curly brackets is positive. The second term is positive for that  portion 
of the spectrum on which z k  is a decreasing function of increasing JkJ,  which is 
usually the domain of interest. Hence there is a strong preference for yk > vk, i.e. 
shorter timescales for tracer-variance evolution. 

Differences between the evolution of tracer and vorticity variances are due to the 
roles of local interaction terms. I n  many turbulent phenomena, local interactions 
k z p z q are most effective. Such interactions are effective in the tracer equation 
(14). However, the vorticity equation in two dimensions excludes just these local 
interactions. If any two of three wavenumbers are nearly equal then bkPq tends to 
vanish. 

We can easily see this tendency in physical space by considering a very narrow 
band spectrum peaked near some k,. Then 5 z - k: Y and flow is nearly along isolines 
of vorticity. Advective terms tend to  vanish as 

where J denotes the Jacobian determinant with respect to x, y. Narrow-bandedness 
imposes no such constraint on the advection u.V$ of tracer. 

Numerical simulations show the dramatically different appearance of #(x, t )  and 
C(x,t ) .  I n  figure 2 from 128 x 128 resolution experiment, # and { are initially 
uncorrelated fields with identical spectra. Fk = G, = /3 = 0, while small-scale diffusion 
of molecular type, i.e. u, = u,k2 and K~ = K,,P, have identical coefficients u,, = K ~ .  
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FIGURE 2. Differences in the physical appearances of 9- and of [-fields are seen. (a )  and (b )  show 
initial fields of 9 and of 5. The fields are uncorrelated but have identical variance spectra. ( c )  and 
(d )  show 4 and 5 respectively, a t  later time t = 2.55& Identical coefficients of diffusion yo = K,, 

act on the fields. = f = /3 = 0. Enhanced scattering of 4 to small scales is readily seen. 

It is seen that q5 rapidly scatters to small scales. An immediate consequence of possible 
geophysical relevance is that variance of passive tracer is dissipated more rapidly than 
vorticity variance. Although the more rapid transfer of tracer variance has been 
deduced (and verified numerically) as a result for Eulerian fields, we may also 
make an inference regarding Lagrangian particles. When Fk = Gk = p = 0, then a 
Lagrangian particle will conserve the vorticity 5 and tracer q5 except through direct 
effects of non-conservative operators D, and D, in ( 1 ) .  When Lagrangian particles 
are tracked in an Eulerian-based simulation, further non-conservative terms arise 
owing to both finite interpolation and to aliasing terms which are cancelled in the 
Eulerian simulation but which do not cancel along Lagrangian trajectories (Haidvogel 
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7 r m s  

FIGURE 3. Lagrangian autocorrelation functions CJ7) for various fields: q = u, 
p = V ,  = c, q = az$/axay and p = 4. 

1982). However, to the extent that  an inertial cascade of vorticity and tracer 
variance dominates particle dynamics, it is plausible that particle 'memory ' of initial 
tracer q5 is erased more quickly than 'memory' of initial vorticity 5. To test this 
conjecture, particles were tracked in a simulation similar to that seen in figure 2. 
Normalized Lagrangian autocorrelations CJT) were calculated for various fields : 
q = u, q = v, q = 6, q = a2$/axay and q = #. Result's, averaged over 48 particles, 
are seen in figure 3. Strongly non-conserved quantities such as u, v or a2$/i3xay 
are effectively decorrelated after about IC<,&. Quantities 5 and 6, which would be 
conserved except for explicit dissipation operators and alias errors, decorrelate less 
rapidly. It is clear though that # decorrelates more quickly than 5 does. 

6. Eddy-diffusivity tensor 
While fluctuation spectra are interesting in themselves and important, e.g. to the 

design of a mapping program, the single item of most common practical concern is 
an ' eddy diffusivity ' defined by 

where D is the eddy-diffusivity tensor in the horizontal (or parapycnal) surface. 
Commonly D is assumed to be isotropic (in the horizontal or parapycnal surface). 
Then the right-hand side of (18) is simply - A ,  G, with A ,  an ad hoc 'coefficient of 
eddy diffusivity', which might be assigned or fitted to observations or estimated by 
'mixing length ' as l'u', with 1' a characteristic length and u' a characteristic velocity 
of the eddy field. Often A ,  is treated not only as a constant but, practically, as a 
thermodynamic property of seawater. Estimates based on large-scale distributions 
give diverse values for A ,  (see e.g. Sverdrup, Johnson & Fleming 1942). An explicit 

( ~ 4 )  = - D . G ,  (18) 
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model illustrating effects of spatial variation and anisotropy of D is described by Armi 
& Haidvogel (1982). However, the nature of variation and the extent of anisotropy 
were specified in an ad hoc, though plausible, way. One purpose of the present study 
is to provide a more theoretical basis for such specifications. 

Efforts to model fluxes in the Fickian form (18)  depend upon the mean 3- 
concentration varying on lengthscales large compared with the largest energetic 
eddy lengthscales. I n  geophysical reality this condition may not hold anywhere, and 
certainly will not hold everywhere. Thus we are cautioned from assuming even the 
existence of a diffusivity, apart from its value. 

For the present theory and numerical experiments, we have assumed a uniform 
mean gradient G and hence an infinite lengthscale separation from the turbulent field, 
which is constrained to satisfy periodic boundary conditions. Therefore we expect to 
find a diffusivity representation of the form (18). We do so by examining the spectral 
contributions to ( u $ )  according to (12). From (15) the stationary solution for Imr '  
is 

where f k  = vk+ ~ ~ + ? , + y k  for convenience. From (12), in component notation, 

where u = (u ,  v) = (ul ,  us) ,  -k  x B = ( -k2 ,  k,) and G = (G,, G2).  In  k-space we adopt 
a polar representation 

k = k (COB 8,, sin O,), 

P2 w; = IC2(l+cOs28k)j 

m 

Z, = Zn(k)einBk. 
n=--a) 

From 2-, = 2, and real Z,, Z, vanish for odd n while Z-, = Z i .  We truncate (21c) 
a t  In1 = 2. Then the coefficient of cos28, gives a tendency to prefer zonal or 
meridional motion, while the coefficient of sin 28, would give tendency to prefer 
NW-SE or NE-SW motion. There is no tendency on a /%plane to excite the sin 28, 
coefficient, so we assume that it vanishes. We rewrite (21 c )  in a more useful form: 

where now Z ( k ) ,  i.e. without subscript, is the isotropic (power) spectrum for vorticity 
and R > 0 gives a tendency to prefer zonal over meridional flows, whereas R < 0 gives 
the reverse tendency. 

Following Rhines (1975) and Holloway & Hendershott (1977), there is a known 
tendency on the /I-plane to develop anisotropy preferring zonal motions (R > 0). For 
the present we ignore anisotropy in 6, for lack of other information and denote the 
isotropic part by [ ( k ) .  

Replacing wavevector sums Z, with sums Z k J 7  kd8, where k = lkl, (20) becomes 

( 1  -8 cos 28) (G, sin 8-G, cos 8) 

P2 k 6"-(1 +cos28) 
( ( U l > % ) + >  = z ' ( k )  2nk2 Z ( k )  jr do ( - sin 8, cos 8) 

2k 
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4l 

0 

where 

is a measure of the tendency for turbulence relative to wave propagation. Integrals 
in I,(&) are of the form 

do, 
COSn 0 

1 +-- 
262 

In((?) = - 
27c 

yielding 
6 

I ,  = ~ 

( 8 2 +  1);' 

262, I ,  =-- 
263 + s 

( 8 2 +  l)i 

- 464 - 262 485 + 483 + 8 
(S2+ 1)i 

I2 = 

Graphs of €,(a) are shown in figure 4. 
The result (24)  can be readily interpreted. Coefficients Z / k 2 &  show that contributions 

to diffusivity from scales k vary as the local velocity variance Z / k 2  multiplied by a 
time <-' which is a kind of persistence time for t,urbulent motions of scale E .  For the 
special case of isotropic turbulence without /3, I ,  = R = 0 while 1, = 1 and I 2  = +. 
Then D is isotropic and given by a single coefficient : 
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Very roughly ( 2 7 )  will agree with a simple mixing-length estimate. See also the 
derivation of Ho (1982). More careful calculation requires accurate evaluation of ( ( k ) .  
One remark, however, is that l(k) tends to be an increasing function of k and therefore 
dominant contributions to fluxes (uq5) will occur on lengthscales slightly larger than 
dominant energetic lengthscales. Figure 5 ( a )  from a numerical simulation (64 x 64, 
pseudospectral, dealiased) shows this tendency. 

Another special case is anisotropic turbulence without /3. Then R += 0, D,, varies 
as 1 + R / 2 .  Recalling that R > 0 gives the tendency to prefer zonal (u,) over meridional 
(uz) motions, this is seen to be a natural result. Having assumed the low-order 
truncation (22), we are obliged to consider motion fields close to isotropy (R2 < 1). 

The effects of /3 may be the most interesting of all. In part /3 has a strong indirect 
effect due to the tendency to induce anisotropy in the velocity field favouring R > 0 
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FIGURE 6. Time evolution of total tracer variance and total fluxes $ and $, each quantity 
averaged over the flow domain, is shown for two cases: ( a )  /3 = 0;  ( b )  p + 0. Dots show simple 
mixing-length estimates ( = 2 x kinetic energy/r.m s. vorticity) for. comparison. 

(cf. Rhines 1975 ; Holloway & Hendershott 1977). However, apart from production 
of R > 0, /3 has direct effects due to finite S in I,. From figure 4 we see that increasing 
/3, hence decreasing S, reduces values of I ,  and I ,  while producing positive values in 
I,. Ignoring R, we see from (24) that  D,, varies as Io+Il while B,, varies as I,,-I,. 
The result is that Dll is little affected by /3 while D,, is more strongly suppressed. 

Because 6 decreases toward small k, contributions to u$ are suppressed in the longer 
scales, i.e. just the more rapidly propagating waves. Thus contributions to v$ arc 
shifted to shorter scales, a tendency which competes with the shift to longer scales 
shown in figure 5 (where /3 = 0). 

The role of /3 is seen also in figure 6. By means of isotropically distributed external 
torques, a stabistically stationary, nearly isotropic eddy field has been obtained. At 
an instant defined to be t = 0, a uniform tracer gradient G = (1 , l )  is imposed. In  figure 
6 ( a )  a value p = 0 is maintained. Fluxes $ and $ arise and saturate after about 
t = 27t<& while tracer variance continues to accumulate. With /3 + 0 in figure 6 ( b ) ,  
fluxes arise but $ quickly saturates a t  a small value while u$ grows toward a value 
only somewhat less than in the /3 = 0 case. 

A normalized correlation coefficient 

( = = -  W+$I - 

( u 2 + , u 2 ) 8  (P)i 
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FIGURE 7 .  Intermittency as measured by flatness factors Fq is shown in an unforced, non-dissipative 
case. Fq are shown for four quantities: (a )  q = 9;  ( b )  q = a, 9; ( c )  q = ay 0; (d )  q = Vz#. As the fields 
evolve toward statistical equilibrium, flatness factors relax toward the Gaussian value Fq = 3. 

in the isotropic (p = 0) case measures the efficiency of the gradient transport. At early 
times, G is large, with values 0 . 7 4 . 8 .  As $-variance accumulates, the value of C 
decreases toward a saturation value near 0.3-0.4. When p =l= 0, the meridional flux 
may be quite small. Nonetheless a zonal correlation coefficient 

131 
(2); (p); 

also saturates a t  a value near 0 . 3 4 . 4 .  

7. Intermittency 
Second-moment (EDQNM) closure theory has a weakness. By describing only 

second-moment statistics, the theory fails to anticipate the extent to which fields may 
become patchy or intermittent. In  fact EDQNM theory is consistent with 
intermittency inasmuch as one does not assume that higher cumulants vanish. 
Rather, EDQNM makes simplifying assumptions about relations among cumulants. 
The goal is to evaluate triple moments (c<<), (<@) and (<$$) in (9). For truly 
random-phase, hence Gaussian, fields triple moments would vanish. Effectively 
EDQNM supposes that fourth and higher non-Gaussian moments arise in conjunction 
with non-vanishing triple moments. 

A common measure of intermittency is kurtosis or flatness factor Fq = q4/(q)2 , 
where q denotes the field of interest. For Gaussianly distributed q, Fq = 3. An excess 
Fp - 3 > 0 indicates intermittency. In  most cases we do not have quantitative forecasts 
for Fq. An exception occurs in cases of evolution toward unforced, undamped 
statistical equilibrium, as described in 93. Near equilibrium (8), fields approach their 
maximally random state, which would be seen in Fq+3. Other cases such as stirring 
in the presence of a mean gradient will sustain variance transfer (i.e. non-vanishing 
triple moments) and hence some sustained level of Fq > 0. 

The approach to (8) is an instructive situation in which to examine intermittency. 
Based upon direct numerical simulation, figure 7 shows evolution of flatness factors. 

__ -2 
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FIGURE 8. Intermittency as measured by flatness factor Fq is shown in the case where a mean 
gradient G as well as dissipation is present. Flatness factors, especially for the derivative fields 9, 
and &, approach quasistationary values above the Gaussian value 3. Curves are coded as in 
figure 7 .  

- _  
q4/l(q2))" where q represents $, a, $, ay $ and Vz$. The initial field consists of random 
phase assignments independently for $ and for [ subject to a prescribed variance 
spectrum. Because of the random phase assignment, initial $- and [-fields (and their 
derivatives) have nearly Gaussian probability distributions (by the central-limit 
theorem). A t  t = 0 flatness factors are close to the Gaussian value 3. After t = 0 
variance transfer develops as the flow moves towards (8). Variance transfer requires 
non-Gaussian moments. In  the later approach to (8), variance transfer relaxes toward 
zero and figure 7 shows flatnesses relaxing toward 3. The case of stirring in the 
presence of a mean gradient is seen in figure 8, which shows sustained levels of excess 
FQ especially in the derivative fields a, $ and ay $. Sustained levels of derivative 
kurtosis are symptomatic of such forced, dissipative, disequilibrium balances. 

8. Stirring from an initial spot 
For the most part, this paper is concerned with variance transfer and with the 

stirring down from large-scale mean fields. Physical intuition as well as many 
practical interests concern the complementary problem of stirring out from an 
isolated initial spot, e.g. as a dye-release experiment (Ewart & Bendiner 1981) or 
an accidental contaminant spill (Kupferman & Moore 1981). 

No very adequate theory appears to exist for the initial-spot scenario. Even a choice 
of measures by which to describe spot evolution is ambiguous. In this section we resort 
to numerical simulation in order to provide an illustration of a spot evolution and 
to compare a variety of measures. See further the studies by Haidvogel & Keffer 
(1984). 

For equations of motion we choose 

at(v2-Cr2)  y+pa, Y + J ( Y , v ~ Y ) + ~ Y  = 0, (28a)  
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These are (1)  expressed in terms of a stream function Y where 5 = V 2 Y .  Jacobian 
terms express the advective terms in (1). We include in ( 2 8 a )  a geophysically plausible 
inverse deformation radius a. Ad hoe choices for D, and Dq in (1) are 

(29) 

Justification for (29) is only that i t  represents, albeit crudely, effects of unresolved, 
small-scale processes leading to variance dissipation, thus preventing unphysical 
evolution toward ( 8 ) .  We may interpret the role of (29) as setting an effective 
Batchelor scale L,, where 

D, = Dq = -SV4. 

L4; = s/e (30) 

and 6 is the average dissipation rate for vorticity variance. L, is the lengthscale a t  
which straining effects estimated by d compete with the effect of (29), resulting in 
smoothing of small scales up to about 2nL,. 

Physical scales for the simulation are as follows : 

L = length of flow domain = 1000 km, 
a-l - - inverse deformation radius = 50 km, 

/3 = 2.0 x lo-" m-l s-l, 
u,,, = 7 cm s-l, 
2nL, = 20 km, 
T = duration of experiment = 4 months. 

To achieve better representation over a broader range of scales, we have increased 
resolution to correspond to 128 x 128 grid points, hence to a grid spacing of 
Ax = 8 km. 

A velocity field has been generated during a period of forcing by random torques. 
From the initiation of the spot experiment a t  nominal t = 0, all forcing of the velocity 
field is omitted. Thus the velocity field decays slowly so that, over the four-month 
experiment, kinetic energy decreases only slightly although vorticity variance 
decreases to  40 yo of its initial value. 

Dispersal of a spot is sometimes interpreted in terms of dispersal of a number of 
neutral particles. Such particles may be seeded as a part of a dye-release experiment. 
We initialize nine particles in the dye spot and follow their subsequent motion 
according to dxldt = u. 

Figure 9 shows evolution of the stream-function field a t  two-week intervals. A 
number of features should be noted. There is no marked anisotropy in the stream 
function despite significant /3. Plausibly this is due to a moderating role of a. Secondly, 
there is visible growth of scale over the four month period, a characteristic of decaying 
two-dimensional turbulence. Thirdly, a tendency for westward propagation of 
pressure ridges and troughs is discernible. Fourthly, positions of the nine Lagrangian 
particles are marked in each frame. Especially the reader should note that the 
Lagrangian particles have become well dispersed over the flow domain. (Note that 
periodic boundary conditions apply also to particles. A particle exiting through an 
eastern boundary, say, re-enters from the west.) 

Dispersal of the tracer field is shown in figure 10 a t  the instants for which the stream 
function is shown in figure 9. Contour intervals are fixed in linearly spaced increments 
of absolute concentration. As concentration fades by dilution, contour lines are lost. 
Initial concentration is a Gaussian spot located by chance on the western edge of a 
northward jet. During the first month, the northward jet propagates across the spot 
location, resulting in a northward displacement as well as the first of an apparent 
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t = O  t = 0.5 t =  1.0 

t =  1.5 t =  2.0 t =  2.5 

t = 3 . 0  t=  3.5 t = 4 . 0  
FIGTJRE 9. Evolution of stream function $(x, t )  is shown at intervals of 0.5 months over a simulated 

four-month experiment. Positions of nine Lagrangian floats are marked. 

‘sequence of splitJtings’. Over the four-month period there is more zonal than 
meridional dispersal. 

At t = 4 months some tracer has been dispersed throughout the flow domain, yet 
figure 10 shows little tendency to fill in the background field. However, since much 
of the tracer has diluted to levels below the lowest contour increment, i t  would seem 
possible that homogenization (filling in the background) is proceeding in the weak 
concentration field. To examine this possibility, figure 11 shows only tracer a t  weaker 
concentrations with contour increments a t  0.1 of the increments in figure 10. A 
qualitative impression is that homogenization proceeds rather ineffectively despite 
the fact that  tracer has been dispersed over scales larger than characteristic eddy 
fields, an observation bearing on discussions of ‘streakiness ’ (Garrett 1981, 1983 ; 
Hollloway 1982; Keffer & Haidvogel 1982; Haidvogel & Keffer 1983). I n  particular, 
although the area of a ‘domain of occupation’ (Kupferman & Moore 1981) sufficient 
to enclose most of the tracer has increased roughly 100-fold by t = 4, peak roncentra- 
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FIGURE 10. Evolution of tracer concentration $(x, t )  is shown a t  times corresponding to the stream 
function seen in figure 9. Contour intervals are fixed, linearly spaced increments of absolute 
concentration. 

tion has only been reduced to 0.24 of the peak concentration a t  t = 0. However, i t  
should be noted that this result will have some sensitivity to choice of the D+ 
operator in ( l b ) .  In  particular, D+ = V4 will not ensure a maximum principle, i.e. 
that extremal values be reduced in their ranges. 

A variety of measures might be devised in order to characterize stirring from an 
initial spot. Choice of such a measure could be based, for example, on some aspect 
of environmental impact concern. Among the more familiar measures are the growth 
rates of centred second moments 
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FIGURE 11. Tracer concentration at t = 4 months in figure 10 is recontoured. Contour increments 
are one tenth of those in figure 10. Only weaker levels of concentration are shown. 

where (z,,, ycm) is the centroid of the #-distribution. Measures based on Lagrangian 
particle statistics include single-particle dispersion 

where overbars denote the average over all particles. Because (32) is based only upon 
a finite number of particles, and because the centroid motion is not removed in (32), 
these measures may evolve differently from (31). If eddy effects were to act 
analogously to diffusion, each of the moments (31) and (32) would grow proportionally 
to t .  However, it is seen in figure 12 that  zonal moments V, and S, grow as t2 .  (After 
t = 3, dye re-enters and V, is invalid. Absolute particle positions are retained, though 
plotted periodically; hence 8, remains valid.) Scaling of second moments as t2  is 
known empirically as ‘diffusion-velocity’ scaling. Both V, and S, show much less 
effective meridional dispersal. 

After t = 1 ,  S, shows essentially no growth. Prior to t = 1 ,  rapid growth of S, as 
t2 is due to centroid dispersion, i.e. the centroid of particles is displaced northward. 
Effects of centroid dispersion may be removed by considering Lagrangian pair- 

separation statistics, 2 - 2  

D, = ( X t - X J  + ( T -  T ) ,  (33) 

where overbars denote the average over each ( i , j )  particle pair. Evolution of D, is 
also shown in figure 12, again approximating t2  or ‘diffusion-velocity ’ scaling. This 
result is empirical. The present experiment does not show the onset of eddy-diffusion 
scaling, i.e. second-moment growth proportional to t .  

There is a caution which is especially to be noted in this section. The result of one 
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FIGURE 12. Eulerian and Lagrangian measures of spot growth as defined in (31)-(33) are shown 
for the experiment seen in figures 9 and 10. Added lines show growth laws as t and t2  for comparison. 

or even several (Haidvogel & Keffer 1984) spot-release experiments may not be 
statistically reliable. However, this aspect threatens the interpretation from actual 
deliberate-release experiments (Ewart & Bendiner 1981) and casts doubt on the 
predictability of dispersal from an accidental release (Kupferman & Moore 1981). The 
difficulty is that  we are seeking to describe dispersal on the same scales as the 
dispersing agents, the eddies. Individual realizations depart widely from ensemble 
expectations. 

This situation is different from the gradient-transport phenomena considered in 9 6. 
There, the transport results from many, relatively independent, eddy-stirring events, 
contributing to the statistical reliability of a single flow-field realization. Moreover, 
for the uniform-gradient case, the lengthscale of variation of mean field is infinitely 
large compared with eddy scales. For these reasons we argue that the concept of eddy 
diffusivity is appropriate to cases of smaller-scale eddies stirring substance down 
(and across) large-scale property gradients, but that eddy diffusivity is an in- 
appropriate or misleading concept as applied to  initial-spot dispersal. 

9. Summary and outlook 
Among the many processes that lead to stirring and transport in geophysical flows, 

we have focused upon the larger-scale, nearly horizontal or parapycnal stirring. We 
have further idealized the flow as two-dimensional geostrophic motion on a beta-plane. 
These are severe idealizations. Nonetheless, a wealth of complicated phenomena 
remain. We feel that  a quantitative as well as qualitative understanding a t  this level 
will be requisite to an understanding a t  any more advanced level of dynamics. 

For the problem that we have defined, we have tried to adopt an encompassing 
approach. We have considered the problem by methods of direct numerical simulation, 
turbulence-closure theory and equilibrium statistical mechanics. 

Broadly, phenomena examined here fall into three groups. In  the first group, we 
consider statistically homogeneous fluctuation fields with no mean fields present. The 
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main emphasis is upon transfer of variance across a wavenumber spectrum. Closure 
theory predicts, and numerical experiments confirm, that variance of thc passive 
tracer is transferred more rapidly than vorticity variance despite the fact  that both 
passive tracer and vorticity are advected quantities. The reason for this difference 
is that wavenumber-local interactions can be quite effective a t  transferring passive 
tracer variance, whereas, in two-dimensional flow, local interactions cannot transfer 
vorticity variance. A result is that  total variance of passive tracer decays more 
quickly than total vorticity variance. We note that the equilibrium statistical- 
mechanical solutions also differ for passive tracer antl for vorticity. Although our 
methods and results are given in Eulerian field variables, we suggest that the 
Lagrangian autocorrelation for passive tracer decays more quickly than the vorticity 
autocorrelation ; this is seen in numerical experiments. 

In  a second area of study, we have treated statistically homogeneous fluctuations 
in the presence of a uniform gradient of passive tracer concentration. Presence of the 
gradient term induces cross-correlation between the tracer and the velocity 
fluctuations. Closure theory and numerical experiments yield consistent results. For 
horizontally isotropic turbulence with /3 = 0, a net down-gradient tracer transport 
occurs. Magnitude of an effective diffusivity agrees approximately with simple 
mixing-length estimates. Examination of the tracer-velocity cross-spectrum shows 
that most of the spatial transport is born by scales somewhat larger than the scales 
of most energetic eddies. When /3 # 0, meridional transport is strongly suppressed 
relative to zonal transport. Thus non-zero p induces anisotropy in the eddy-diffusivity 
tensor. 

Thirdly, we contrast the stirring down on a uniform gradient with a numerical 
simulation of stirring out from an initial tracer spot. We compare various statistics 
of the tracer evolution with statistics of a number of Lagrangian particles also 
released in the initial spot. Although growth of second spatial moments, either of 
tracer field or of Lagrangian particle ensemble, could be fitted to a wale-dependent 
diffusivity, such a description may be misleading. We observe tracer dispersed over 
distances substantially larger than the largest eddy lengthscales ; yet the tracer field 
remains quite streaky, i.e. consisting of relatively undiluted filaments. We further 
remark that initial-spot experiments are expected to be highly variable from one 
release to another. Initial-spot experiments are therefore difficult to  characterize or 
to anticipate. 

We consider intermittency as measured by the departure of fluctuation statistics 
from Gaussian distribution. We demonstrate that, for unforced non-dissipative flow, 
intermittency vanishes as the flow relaxes toward the statistical-mechanical equilib- 
rium. Contrariwise, we observe that, for dissipative flow in the presence of a mean 
gradient, non-Gaussian moments arise and achieve stationary values. 

The present study could be extended in many ways. For example, closure theory 
as developed in $4 has not been tested antl calibrated quantitatively in a study such 
as Herring et al. (1982). The role of finite deformation radius has been included in 
$8, but not in the previous sections. It would be useful to extend this study 
throughout to include cases where the energetic eddy lengthscale is as large as, or 
larger than, the effective deformation radius. (Motions on scales larger than the 
deformation radius would be particularly appropriate to plasma-transport problems 
mentioned in $ 1 ,  for which the quantity analogous to deformation radius is the ion 
gyroradius.) 

Another topic of current interest is the possible role of isolated long-lived vortices 
in the stirring and transport of substance. Methods of statistical mechanics or 
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turbulence-closure theory as given in this paper are not directly applicable. A 
numerical simulation study of passive tracer stirred and transported in the evolving 
velocity fields of isolated vortices is reported in Riser & Holloway (1984). 

Extension of present work to include mean-flow fields, especially closed gyre 
circulations, is an important objective. As a first step, present results may be used 
to specify spatially variable, anisotropic diffusivities within larger circulation patterns 
(cf. Armi & Haidvogel 1982). However, the validity of the eddy-diffusivity form 
depends upon scale separation between eddies and the variation of mean properties, 
including mean flow. Sufficient scale separation may not be realized in actuality. 
Theoretical approaches may develop along lines of quasi-homogeneity, as in Carnevale 
& Martin (1982) or Ho (1982). 

Other extensions could include baroclinically active flow (raising interesting 
questions about the relationship between horizontal tracer transport and the rate of 
release of available potential energy) and flow overlying irregular topography. 
Theoretical approaches to stirring in such complicated situations may prove im- 
practical. However, numerical simulation should remain as a straightforward, viable 
approach. 

This work has been supported in part by the National Science Foundation under 
grant OCE-7923546. Computations have been performed a t  the National Center for 
Atmospheric Research, which is sponsored by the National Science Foundation. We 
are grateful for comments from Dr C. J. R. Garrett and from anonymous referees. 
Programs for the direct simulations have evolved as a group effort including 
contributions from Dr M. K. Davey, Dr D. B. Haidvogel and Dr S. Riser. This is 
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